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Abstract: Recently exact agreement has been found between three-point correlators of

(single particle) chiral operators computed in string theory on AdS3 × S3 × T 4 with NS-

NS flux and those computed in the symmetric orbifold CFT. However, it has also been

shown that these correlators disagree with those computed in supergravity, under any

identification of single particle operators which respects the symmetries. In this note

we resolve this disagreement: the key point is that mixings with multi-particle operators

are not suppressed even at large N in extremal correlators. Allowing for such mixings,

orbifold/string theory operators and supergravity operators can be matched such that

both non-extremal and extremal three point functions agree, giving further evidence for

the non-renormalization of the chiral ring.
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1. Introduction and summary

Chiral primary operators play an important role in testing the AdS/CFT correspondence.

Supersymmetric chiral primaries have protected dimensions, and matching between CFT

spectra at weak coupling and supergravity spectra at strong coupling provided the earliest

checks of AdS/CFT.

In the correspondence between N = 4 SYM and string theory on AdS5 ×S5, the three

point functions of 1/2 BPS (single trace) operators computed from supergravity were found

to match the corresponding correlators computed in free field theory [1]. This indicated

the existence of a previously unknown non-renormalization theorem for such correlators

which was subsequently proved, modulo various subtleties, in [2]. Moreover, although four

and higher point functions of chiral primaries are in general renormalized, there is evidence

that extremal correlators, in which the dimension of one operator is equal to the sum of

the others, are also protected [3]; see also the review [4].

It is natural to ask whether similar properties for correlators of chiral primaries hold

in the case of AdS3/CFT2 dualities. The simplest such case is the D1-D5 system, with n1

D1-branes and n5 D5-branes. Here the duality is between type IIB in an AdS3 × S3 × X4

background, where X4 is either T 4 or K3, and a two-dimensional N = 4 superconformal

field theory; see for example the review [5].

The bulk and boundary theories in this case are known to have equivalent moduli

spaces [6, 7], but they are tractable only at distinct points in the moduli space. In the

bulk one can work in the supergravity limit, as one does in the case of AdS5 × S5. One

can also consider the S-dual system without RR flux, where the string theory is tractable:

for Euclidean AdS3 it is described by H+
3 and SU(2) WZW models at level k = n5. The

boundary theory becomes tractable in the orbifold limit, namely when the SCFT becomes

the symmetric orbifold theory with target space N = n1n5 copies of X4. Note that the
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orbifold theory is not the boundary theory dual to the weakly curved, weakly coupled RR

AdS3×S3×X4 background; the boundary theory is a marginal deformation of the orbifold

theory, in which the orbifold is resolved.

Whilst the limits in which the boundary and bulk theories are tractable are at different

points in the moduli space, matching of the spectrum of chiral primaries is still possible.

Comparison of the spectra obtained from supergravity with those of the boundary theory

was first carried out in [8, 9]. There were also early attempts to compare three point

functions computed from supergravity with those computed in the orbifold CFT. Extremal

three point functions were computed in the orbifold CFT in [10, 11] whilst the cubic

couplings in supergravity relevant for computing three point functions were determined

in [12 – 14]. It was however noted that these cubic couplings do not match in structure the

extremal three point functions computed in the orbifold theory. Only the cubic couplings in

supergravity, and not the three point functions, were computed in [13, 14]. Computing the

three point functions is rather subtle, in that systematic holographic renormalization [15]

is required to obtain the correct correlators, satisfying the requisite Ward identities.

Moreover, extremal correlators are subject to additional subtleties: the bulk extremal

cubic couplings vanish, and the corresponding three point functions are obtained from finite

boundary terms in the action, which in turn should follow from careful reduction of the

ten-dimensional action [3]. Put differently, one should first include boundary terms in the

ten-dimensional action such that the variational problem is well-posed for the appropriate

Dirichlet boundary conditions, and then dimensionally reduce to obtain the effective three-

dimensional action.

In practice, it is more convenient to obtain the extremal correlators by analytic con-

tinuation of the corresponding non-extremal correlators. That is, one defines the extremal

three point functions as

〈O∆2+∆3(x1)O∆2(x2)O∆3(x3)〉 =
C(∆2+∆3)∆2∆3

| ~x1 − ~x2|2∆2 | ~x1 − ~x3|2∆3
;

C(∆2+∆3)∆2∆3
= Lim∆1→(∆2+∆3)(C∆1∆2∆3), (1.1)

where the scalar operator O∆ has dimension ∆, and the non-extremal structure constant

C∆1∆2∆3 follows from the bulk non-extremal couplings. This analytic continuation was

discussed in [3] and more recently such a definition of extremal correlators was discussed

in [16] within the framework of holographic renormalization. Note that this approach

implicitly assumes that the structure constants are analytic in the operator dimensions,

which need not be true, given that the latter are discrete.

Holographically renormalized non-extremal correlators for scalar chiral primaries were

recently computed from supergravity in [18], and the corresponding extremal correlators

were then determined via analytic continuation. These extremal correlators were compared

to those computed in the orbifold CFT. Since only a subset of non-extremal correlators

of scalar chiral primaries have so far been computed in the orbifold theory, in [11], only

extremal correlators could be compared.

A structural disagreement between these correlators was found. To be more precise,

the single particle scalar chiral primaries in the orbifold CFT are labeled by the (p, p)
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cohomology of X4, their twist n ≥ 1, and their R symmetry SU(2)L × SU(2)R quantum

numbers as

O0,0
nmm̄; O(r)1,1

nmm̄ ; O2,2
nmm̄. (1.2)

Here (m, m̄) are the eigenvalues of J3 and J̄3 respectively and (r) labels the (1, 1) coho-

mology of X4, of dimension h1,1; thus (r) runs from 1 to 4 for T 4 and from 1 to 20 for K3.

The operator dimension ∆ is related to the twist and cohomology via

∆ = (n − 1 + p), (1.3)

with J = J̄ = 1
2∆ being the SO(4) R-symmetry quantum numbers. The cohomology label

implicitly defines the transformation properties under the SO(h1,1) global symmetry of the

CFT.

On the supergravity side one has a set of operators dual to scalar fields in AdS3 which

are labeled by their dimension ∆ and R symmetry SU(2)L × SU(2)R quantum numbers:

OS(a)

∆mm̄; OΣ
∆mm̄, (1.4)

where ∆ ≥ 1 for OS(a)

∆mm̄ and ∆ ≥ 2 for OΣ
∆mm̄. Here (a) runs from 0 to h1,1 and Φ ≡ (S(a),Σ)

are the bulk scalar fields, which couple to these operators. Of the (h1,1+1) operators OS(a)

∆mm̄

one transforms as a singlet under the SO(h1,1) global symmetry and the remaining h1,1 as

a vector. OΣ
∆mm̄ is also a singlet under the SO(h1,1) symmetry; see [9] for further details,

and tables of the operators.

Already from (1.2) and (1.4) one can see a subtlety in comparing correlators: the

identification between orbifold CFT operators and those dual to supergravity fields is not

unique, since the protected quantum numbers of dimension, R symmetry charge and the

SO(h1,1) global symmetry leave some degeneracy. Given that OΣ
1mm̄ is absent, a natural

identification between orthonormal operators is

O0,0
nmm̄ ↔ OS

(n−1)mm̄; (1.5)

O(r)1,1
nmm̄ ↔ OS(r)

nmm̄;

O2,2
nmm̄ ↔ OΣ

(n+1)mm̄,

and it is this identification which has been assumed in previous literature, but any linear

rotation of this identification such that
(

OS
(n−1)mm̄

OΣ
(n−1)mm̄

)

= M
(

O0,0
nmm̄

O2,2
(n−2)mm̄

)

, (1.6)

with M an arbitrary SO(2) matrix also respects the symmetries and orthonormality.

The result of [18] was that there is a disagreement in the extremal correlators for

any choice of M. The disagreement is structural in that for any such linear identification

many more of the correlators are non-vanishing in the orbifold theory than in supergravity.

Such a disagreement is a priori perhaps not surprising: the computations are at different

points in the moduli space and there is no known non-renormalization theorem. Even in
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the N = 4 SYM theory, which has thirty-two supercharges, the non-renormalization of

the analogous three point functions is rather subtle and the proof requires assuming the

absence of certain conformal invariants [2]. Renormalization in this case, with only sixteen

supercharges, is not a priori excluded, particularly as the orbifold theory is a marginal

deformation of the actual boundary CFT.

However, recently three point functions of chiral primaries were computed in the NS-

NS AdS3 × S3 × X4 background using the WZW model description of the worldsheet

theory. In [23] extremal three point functions of all single particle chiral primaries were

computed, whilst in [22] non-extremal three point functions for operators in the O0,0
nmm̄

family were computed. Later in [24] the calculations were extended to non-extremal three

point functions of all chiral primaries. All of these correlators agree exactly with those

computed in the orbifold CFT, although let us recall that in the latter only a subset of the

non-extremal correlators have so far been determined.

That computations at different points in the moduli space agree indicates that there

is indeed a non-renormalization theorem protecting these correlators, but at the same

time raises the puzzle of why the extremal correlators computed from supergravity did not

agree with the orbifold CFT (and hence the string) computations. Whilst it is undoubtedly

interesting to find that there is a non-renormalization theorem protecting these correlators,

it is arguably more important to understand whether there is any unresolved subtle issue in

comparing supergravity and dual field theory results. The reason is that in many situations

in gravity/gauge theory dualities one wants to use the supergravity description as a tool to

compute the strong coupling result, exactly, when no non-renormalization theorem applies.

In this paper we will resolve this issue, and explain how the supergravity correlators

are reconciled with the orbifold CFT and string theory correlators. The conclusions are

the following. All non-extremal three point functions computed via supergravity agree

precisely with those computed via string theory provided that the matrix M is such that

M =
1√
2∆

(

(∆ + 1)1/2 −(∆ − 1)1/2

(∆ − 1)1/2 (∆ + 1)1/2

)

(1.7)

for ∆ = (n−1) ≥ 2. This agreement provides further evidence for the non-renormalization

theorem. Note however that the correspondence between supergravity operators and those

in the orbifold CFT is not the naive relation one might have anticipated: M is not diagonal.

This explains the early observation that the cubic couplings in supergravity look very

different from the structure constants in the orbifold CFT three point functions.

As discussed in [18] such a linear map between supergravity and orbifold CFT operators

is not sufficient to obtain matching for all the extremal correlators. To understand how this

issue is resolved, one needs to recall the large N scaling behavior of correlators: the key is

that extremal non-linear operator mixings are not suppressed in extremal correlators [3];

see also related discussions in Arutyunov:1999en. Thus one can consider an identification

between orbifold CFT operators and supergravity operators of the form

Op,p
∆mm̄ ↔ OΦ

∆mm̄ +
1√
N

∑

i,j

bijOΦi

∆imim̄i
OΦj

(∆−∆i)(m−mi)(m̄−m̄i)
+ · · · , (1.8)
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where bij are certain N independent coefficients and the ellipses denote subleading terms

in N . Such a two particle term contributes at leading order to certain extremal three point

functions, but only at subleading order to non-extremal three point functions. Thus with

suitable choices of bij one can match the extremal correlators computed in supergravity

with those computed in string theory and the orbifold theory.

The physical interpretation of such non-linear mixings is that single particle string and

orbifold CFT operators do not correspond to single particle supergravity operators. At first

sight this may seem surprising, since one might have anticipated that the string worldsheet

vertex operators for supergravity modes would correspond to single particle supergravity

fields, as they do in flat space. However, there is no contradiction: the matching between

supergravity fields and string vertex operators is defined by taking the limit of the string

computations of n-point functions, and comparing with the corresponding supergravity

computations. Thus the comparison made here is the correct way to define the relationship

between operators dual to supergravity fields and string vertex operators.

So, to summarize, the non-extremal and extremal three point functions computed in

supergravity, in string theory and in the orbifold theory agree provided that one correctly

matches operators and takes into account certain extremal non-linear operator mixings.

Matching of the correlators determines the map between supergravity and orbifold/string

theory operators, where quantum numbers alone do not uniquely determine it.

One might wish to explore whether other correlators are protected by non-

renormalization theorems. In the analogous case of N = 4 SYM, there is evidence that

extremal (and next to extremal) n-point functions of chiral primaries are similarly pro-

tected, see [4], and thus it is possible that all extremal correlators in this case too will

match between string theory, the orbifold CFT and supergravity. Note however that gen-

eral non-extremal n-point functions for n ≥ 4 are not protected even in N = 4 SYM, and

are thus unlikely to be protected in this less supersymmetric system. Comparison of the

extremal correlators will again be subtle since non-linear operator mixings may contribute

at leading order. That is, in an extremal n-point function mixings of the type

OΦ
∆ +

1

N (n−2)/2

n−1
∏

i=1

OΦi

∆i
+ · · · (1.9)

with
∑

i ∆i = ∆ are not suppressed.

An important open issue is to understand better when there are non-renormalization

theorems for correlators. The (almost) proof of the non-renormalization of three point

functions in N = 4 SYM relies on sophisticated harmonic superspace techniques. In

this case one should be able to use the 2d N = 4 supersymmetry to explain the non-

renormalization. However, an understanding of the non-renormalization from the bulk

supergravity perspective would more immediately generalize to other AdS/CFT dualities.

Such a non-renormalization theorem in the bulk would involve arguing that α′ corrections

to the onshell renormalized supergravity action do not contribute to the correlators.

The above discussion relates to three point functions of chiral primaries associated with

single particle supergravity fields. Given that these appear to satisfy a non-renormalization
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theorem, with appropriate operator mixing taken into account, it seems very likely that

all three point functions of multi-particle chiral primaries are similarly protected. In the

analogous case of N = 4 SYM, there is indeed evidence for this, from both harmonic

superspace considerations [2] and more recently from the holographic analysis of LLM

bubbling solutions in [20].

If indeed all three point functions are protected, then an immediate consequence would

be that vevs of chiral primary operators in states created by other chiral primaries are also

not renormalized. Now in [17 – 19] such vevs were used to test the proposed correspondence

between 1/2 BPS D1-D5 fuzzball geometries and superpositions of RR ground states. Non-

renormalization of the vevs can be used to push this correspondence much further, as will

be explored in a separate publication.

The plan of this paper is as follows. In section 2 we review the results of the su-

pergravity computation of three point functions, whilst in section 3 the results of the

corresponding string theory computations are reviewed. In section 4 the non-extremal

correlators are found to match, with an appropriate linear identification of operators. In

section 5 it is shown that additional non-linear terms in this operator identification are

needed to obtain matching of extremal correlators.

2. Supergravity computation of correlators

In this section we will review the holographic computation of three point functions of single

particle scalar chiral primaries. These correlators are computed by perturbing about the

AdS3 × S3 × X4 background, where X4 is T 4 or K3. There are three distinct families

of scalar chiral primaries associated with the (p, p) cohomology of X4 with p = 0, 1, 2

respectively. The operators couple to the following scalar fields in AdS3:

SkI ; S
(r)
kI ; ΣkI . (2.1)

Here (k, I) denote the SO(4) R symmetry labels: k is the degree of the associated S3

scalar spherical harmonic and I denotes the remaining Dynkin labels. Expressing SO(4) =

SU(2)L×SU(2)R, appropriate labels are the J3
L/R charges (m, m̄). The middle cohomology

of X4 is labeled by (r) = 1, · · · h1,1(X4) where h1,1 is four for T 4 and twenty for K3; this

label defines the field transformations under the global SO(h1,1) symmetry.

Up to the overall normalization factor, the kinetic terms for these fields are canonically

normalized, namely the bulk action is

S =
N

4π

∫

d3x
√
−G

(

RG + 2 − 1

2
((DSkI)

2 − k(k − 2)(SkI)
2) (2.2)

−1

2
((DS

(r)
kI )2 − k(k − 2)(S

(r)
kI )2) − 1

2
((DΣkI)

2 − k(k − 2)Σ2
kI) + · · ·

)

.

The overall normalization is proportional to the integer N = n1n5. Note that the mass

terms are such that the scalar fields associated with degree k harmonics couple to operators

of dimension k. For the S fields k ≥ 1 whilst for the Σ fields k ≥ 2. To calculate the three

– 6 –



J
H
E
P
0
6
(
2
0
0
8
)
0
1
0

point functions one also needs the appropriate cubic couplings computed in [12, 13]. These

are given by

−N

4π

∫

d3x
√
−G(T123S

(a)1S(a)2Σ3 + U123Σ
1Σ2Σ3) (2.3)

≡ − N

16π

∫

d3x
√
−GV123 ×

×
(

S(a)1S(a)2Σ3

√

(k1 + 1)(k2 + 1)
+

(k2
1 + k2

2 + k2
3 − 2)

(k1 + 1)(k2 + 1)

Σ1Σ2Σ3

6
√

(k1 − 1)(k2 − 1)

)

,

V123 =
Σ(Σ + 2)(Σ − 2)α1α2α3a123

(k3 + 1)
√

k1k2k3(k3 − 1)

where ki denotes the dimension of the operator dual to the field Ψi, Σ = k1 + k2 + k3,

α1 = 1
2(k2 + k3 − k1) etc and a123 is shorthand for the spherical harmonic overlap. Here

the label (a) = 1, · · · h1,1(X4) + 1 ≡ n includes all S fields. For subsequent notational

convenience we introduce the combinations T123 and U123 which are defined implicitly

by the above equalities. Compactification of type IIB on X4 gives rise to a theory with

SO(n) symmetry, and the cubic couplings respect this symmetry. Note however that is an

accidental symmetry: only the SO(h(1,1)) symmetry is respected by the orbifold CFT and

string theory three point functions.

The (renormalized) correlators can be computed using standard holographic renormal-

ization techniques. The two point functions are [18]:

〈OS(a)

k1I1(x)OS(b)

k2I2(0)〉h =
N

2π2
(k1 − 1)2

(

1

x2k1

)

R

δI1I2δk1k2δ
(a)(b); k 6= 1 (2.4)

〈OΣ
k1I1(x)OΣ

k2I2(0)〉h =
N

2π2
(k1 − 1)2

(

1

x2k1

)

R

δI1I2δk1k2 ,

where OS(a)
and OΣ denote the operators dual to S(a) and Σ respectively. The subscript

R indicates that the expressions are renormalized whilst the subscript h in these and

subsequent expressions denotes that these are the holographically computed correlators.

When k = 1, (k − 1) is replaced by 1 in the first expression; this is a special case in which

the Breitenlohner-Freedman bound is saturated. Recall that there is no k = 1 operator

OΣ.

The three point functions are [18]:

〈OS(a)
(x1)OS(b)

(x2)OΣ(x3)〉h =
N

4π3

W123T123δ
(a)(b)

|~x1 − ~x2|2α3 |~x1 − ~x3|2α2 |~x2 − ~x3|2α1
; (2.5)

〈OΣ(x1)OΣ(x2)OΣ(x3)〉h =
3N

4π3

W123U123

|~x1 − ~x2|2α3 |~x1 − ~x3|2α2 |~x2 − ~x3|2α1
;

W123 =
Γ(α1)Γ(α2)Γ(α3)Γ(1

2 (Σ − 2))

Γ(k1 − 1)Γ(k2 − 1)Γ(k3 − 1)
.

Here the operator at position xi has dimension ki and SO(4) R symmetry labels Ii.
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To compare with the orbifold CFT and string theory computations one wants normal-

ized three point functions, dividing out by the norms of the operators as given by the two

point functions. Suppressing the standard position dependence, this gives:

〈ÔS(a)ÔS(b)ÔΣ〉h =
1√
2N

W̃123T123δ
(a)(b); (2.6)

〈ÔΣÔΣÔΣ〉h =
3√
2N

W̃123U123;

W̃123 =
Γ(α1)Γ(α2)Γ(α3)Γ(1

2(Σ − 2))

Γ(k1)Γ(k2)Γ(k3)
,

where Ô denotes the unit normalized operators. The remaining correlators vanish

〈ÔS(a)ÔS(b)ÔS(c)〉h = 〈ÔS(a)ÔΣÔΣ〉h = 0, (2.7)

regardless of the operator dimension.

For later purposes it will be useful to give explicitly extremal correlators in which one

of the αi = 0. These are defined as the continuation of the expressions (2.6): the pole in

W̃123 as one of the αi → 0 cancels a corresponding zero in the bulk couplings (T123, U123)

to give a finite limit. The relevant normalized extremal three point functions are thus of

three types:

〈ÔS(a)†
k1+k2

ÔS(b)

k1
ÔΣ

k2
〉h = δ(a)(b) a123√

N

√

2k1k2(k1 + k2)(k1 + k2 + 1)

(k1 + 1)(k2 + 1)2(k2 − 1)
; (2.8)

〈ÔΣ†
k1+k2

ÔS(a)

k1
ÔS(b)

k2
〉h = δ(a)(b) a123√

N

√

2k1k2(k1 + k2)

(k1 + 1)(k2 + 1)(k1 + k2 − 1)
;

〈ÔΣ†
k1+k2

ÔΣ
k1
ÔΣ

k2
〉h =

a123√
N

(k2
1 + k2

2 + (k1 + k2)
2 − 2)2

(k1 + 1)(k2 + 1)

√

k1k2(k1 + k2)

2(k1 − 1)(k2 − 1)(k1 + k2 − 1)
.

Note that the triple overlap a123 = 1 when the operator with maximum dimension also has

SO(2) R charges which are minus the sums of the SO(2) charges of the other operators. In

particular that the extremal correlators at lowest dimension are:

〈ÔΣ†
2 ÔS(a)

1 ÔS(b)

1 〉h = δ(a)(b) a123√
N

; 〈ÔS(c)†
2 ÔS(a)

1 ÔS(b)

1 〉h = 0. (2.9)

3. String theory/orbifold CFT correlators

In this section we will review the results for the corresponding correlators computed in

string theory and the orbifold CFT. Not all non-extremal correlators have been computed

in the orbifold CFT, but those which are known agree with those computed via the string

theory, as do all extremal correlators. Here we summarize the results of [22 – 24] for the

string theory computation of three point functions of scalar chiral primaries. Note that

general three point functions involving vector chiral primaries associated with the (0, 2)

and (2, 0) cohomology of X4 are also given in [23, 24]. We will not consider these here,
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since the corresponding holographic correlators have not been computed, but it should be

straightforward to extend our discussions to these operators.

The scalar chiral primaries are labeled by the (p, p) cohomology of X4, their twist

n ≥ 1, and their R symmetry SU(2)L × SU(2)R quantum numbers as

O0,0
nmm̄; O(r)1,1

nmm̄ ; O2,2
nmm̄. (3.1)

Here (m, m̄) are the eigenvalues of J3 and J̄3 respectively and (r) labels the (1, 1) coho-

mology of X4, of dimension h1,1; thus (r) runs from 1 to 4 for T 4 and from 1 to 20 for

K3. The cohomology label is equivalent to giving the transformation properties under the

SO(h1,1) global symmetry. The operator dimension is given by

∆ = (n − 1 + p), (3.2)

with J = J̄ = 1
2∆. These operators are orthonormal

〈Op,p
n−m−m̄Op,p

nmm̄〉s = 1, (3.3)

with the subscript s denoting that these are string theory correlators. The three point

functions can be conveniently expressed as

〈Oǫ1,ǭ1
n1m1m̄1

Oǫ2,ǭ2
n2m2m̄2

Oǫ3,ǭ3
n3m3m̄3

〉s =
1√
N

L(Ji,mi)L(J̄i, m̄i)
(
∑3

i=1 ǫini + 1)(
∑3

i=1 ǭini + 1)

4(n1n2n3)1/2
;

〈O(r)1,1
n1m1m̄1

O(s)1,1
n2m2m̄2

Oǫ,ǭ
n3m3m̄3

〉s =
1√
N

δ(r)(s)L(Ji,mi)L(J̄i, , m̄i)

(

n1n2

n3

)1/2

; (3.4)

where ǫ = (p − 1) for p = 0, 2. Here

L(Ji,mi) = dJ1,J2,J3
m1,m2,m3

ηJi

(

α1!α2!α3!(J1 + J2 + J3 + 1)!

(2J1)!(2J2)!(2J3)!

)1/2

, (3.5)

ηJi
= (−)

1
2
(J1+J2+J3).

with α1 = J2 + J3 − J1 = 1
2 (∆2 + ∆3 − ∆1) etc and

dJ1,J2,J3
m1,m2,m3

=

(

J1 J2 J3

m1 m2 m3

)

, (3.6)

are the SU(2) 3j symbols. Note that U(1) R-charge conservation enforces that m1 + m2 +

m3 = m̄1 + m̄2 + m̄3 = 0 in the correlators.

4. Matching non-extremal correlators

Let us now consider the matching of the correlators (2.6), (2.7) and (3.4). The most general

linear identification of operators which respects the symmetries is

O
S(r)

nmm̄ ↔ O(r)1,1
nmm̄ ;

(

O
S
(n−1)mm̄

O
Σ
(n−1)mm̄

)

= M
(

O0,0
nmm̄

O2,2
(n−2)mm̄

)

, (4.1)
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for an arbitrary SO(2) matrix M. Here we denote by O
Φ
∆ operators which for non-extremal

correlators are to be identified with the holographic operators ÔΦ
∆. For extremal correlators

we will need to refine the map between these operators and the holographic operators.

The matrix M is completely fixed by the vanishing of the correlators

〈OS
O

S(r)
O

S(s)〉 = 0, (4.2)

which implies

M =
1√
2∆

(

(∆ + 1)1/2 −(∆ − 1)1/2

(∆ − 1)1/2 (∆ + 1)1/2

)

(4.3)

for ∆ = (n− 1) ≥ 2. Clearly there can be no operator mixing at ∆ = 1, since there are no

dimension one O
Σ operators; this is hence a special case which will be discussed separately.

Having determined M, there is no further freedom in the operator identification and

one can check whether the remaining correlators agree. Forming the appropriate linear

combinations of the string theory correlators (3.4), one finds that

〈OS(a)
O

S(b)
O

S(c)〉s = 0; ∆i 6= 1, (4.4)

〈OS(a)
O

Σ
O

Σ〉s = 0; ∆1 6= 1,

〈OΣ
O

S(a)
O

S(b)〉s =
1√
N

L(Ji,mi)L(J̄i, m̄i)δ
(a)(b)

√
2(∆1∆2∆3)

1/2

(∆2
1 − 1)1/2

; (4.5)

〈OΣ
O

Σ
O

Σ〉s =
(∆2

1 + ∆2
2 + ∆2

3 − 2)

2((∆2
2 − 1)(∆2

3 − 1))1/2
〈OΣ

O
S(a)

O
S(b)〉s. (4.6)

Here the subscript s denotes that these are linear combinations of the correlators computed

in the string theory.

Now let us compare these correlators with the holographic correlators (2.6) and (2.7):

the zeroes given in (2.7) are reproduced (except in the special cases involving dimension

one operators). Moreover, using (2.6) and noting that

3U123

T231
=

(∆2
1 + ∆2

2 + ∆2
3 − 2)

2((∆2
2 − 1)(∆2

3 − 1))1/2
, (4.7)

one sees that the ratio given in (4.6) indeed agrees with that from supergravity. Thus

one need only compare the overall normalization of (4.5) with that of the supergravity

correlator for all non-extremal correlators to match. Noting that

W̃123T231 =
α1!α2!α3!(J1 + J2 + J3 + 1)!

(2J1)!(2J2)!(2J3)!

√
∆1∆2∆3

(∆2
1 − 1)1/2

2a123

((∆1 + 1)(∆2 + 1)(∆3 + 1))1/2
,

(4.8)

the holographic correlator (2.6) can be rewritten in terms of the string theory correlator as

〈ÔΣÔS(a)ÔS(b)〉h
〈OΣOS(a)

OS(b)〉s
=

1

ηJi
ηJ̄i

dJ1,J2J3
m1,m2,m3d

J̄1,J̄2J̄3
m̄1,m̄2,m̄3

a123

((∆1 + 1)(∆2 + 1)(∆3 + 1))1/2
. (4.9)

Triple integrals of spherical harmonics can be expressed in terms of 3j symbols; in particular

the triple overlap a123 can be written as [26]

a123 = ηJi
ηJ̄i

dJ1,J2J3
m1,m2,m3

dJ̄1,J̄2J̄3
m̄1,m̄2,m̄3

((2J1 + 1)(2J2 + 1)(2J3 + 1))1/2, (4.10)
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and thus the normalization of the holographic correlators precisely matches that of the

string correlators!

5. Matching of exceptional extremal correlators

The linear matching between supergravity and orbifold CFT operators is sufficient for all

non-extremal correlators, and most extremal correlators, to match. There remains however

a discrepancy for correlators involving dimension one operators, where no linear mixing was

possible.

For correlators which involve at least one dimension one operator, some agree with the

holographic results, namely

〈OS
∆2

O
S(r)

1 O
S(s)

∆3
〉s = 0; (5.1)

〈OΣ
∆2

O
S(r)

1 O
S(s)

∆3
〉s =

1√
N

L(Ji,mi)L(J̄i, m̄i)δ
(r)(s)

√
2∆2∆3

(∆2
2 − 1)1/2

;

〈OS
1 O

S
∆2

O
Σ
∆3

〉s =
1√
N

L(Ji,mi)L(J̄i, m̄i)

√
2∆2∆3

(∆2
3 − 1)1/2

,

but the rest do not:

〈OS
1 O

S
1 O

S
2 〉s =

2√
N

L(Ji,mi)L(J̄i, m̄i);

〈OS
1 O

S
1 O

Σ
2 〉s =

√
3√
N

L(Ji,mi)L(J̄i, m̄i);

〈OS
1 O

S(r)

∆2
O

S(s)

∆3
〉s =

1√
N

L(Ji,mi)L(J̄i, m̄i)

(

∆2∆3

2

)1/2

; (5.2)

〈OS
1 O

S
∆2

O
S
∆3

〉s =
1√
2N

L(Ji,mi)L(J̄i, m̄i)
√

∆2∆3;

〈OS
1 O

Σ
∆2

O
Σ
∆3

〉s =
1

2
√

2N
L(Ji,mi)L(J̄i, m̄i)

√
∆2∆3

((∆2
2 − 1)(∆2

3 − 1))1/2
(∆2

2 + ∆2
3 − 1),

with the corresponding holographic correlators being

〈ÔS
1 ÔS

∆2
ÔS

∆3
〉h = 〈ÔS

1 ÔS(r)

∆2
ÔS(s)

∆3
〉h = 〈ÔS

1 ÔΣ
∆2

ÔΣ
∆3

〉h = 0; (5.3)

〈ÔS
1 ÔS

1 ÔΣ
2 〉h =

1√
N

a123 ≡ 2√
3N

L(Ji,mi)L(J̄i, m̄i).

Note that all these correlators are extremal because the spherical harmonic triple over-

laps are only non-zero when ∆3 = (∆2 ± 1). This follows from the addition of SO(4)

representations
(

1

2
,
1

2

)

⊕
(

∆2

2
,
∆2

2

)

→
(

∆2 ± 1

2
,
∆2 ± 1

2

)

. (5.4)

Whilst the extremal holographic correlators are (by construction) the analytic continuation

of corresponding non-extremal correlators, the string theory correlators in (5.2) are not the

analytic continuation of corresponding non-extremal correlators given in (4.5). As we will

now explain, this apparent discrepancy between extremal correlators can be resolved by

allowing for non-linear operator mixing.
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5.1 Large N behavior of correlators

Let OΦ
k denote the operator of dimension k and SO(2) R charges (k/2, k/2) dual to the

supergravity field Φ, where Φ = (S(a),Σ). Now denote by

O[Φ]n
k =

[

n
∏

i=1

OΦi

ki

]

(5.5)

the associated protected n-particle operators, with dimension k =
∑

i ki and R charges

(k/2, k/2). Here [OΦi

ki
· · ·] denotes the highest weight component of the direct product of

SO(4) representations.

The operators O[Φ]n
k transform in the same SO(4) representation as the single particle

operators OΦ
k and therefore one would anticipate that there is operator mixing. Although

generically operator mixing with multi-particle operators is suppressed in the large N limit,

this is not true for operators transforming in the same representations. One can understand

this from large N counting arguments as follows.

Consider first correlation functions of single particle operators. The two and three

point functions computed from gravity scale as N , as given in (2.4) and (2.5), so the

normalized two and three point functions scale as one and 1/
√

N respectively. Four point

functions include both disconnected and connected contributions. The former scale as N2

and are such that

〈OΦ1
k1

(x1)OΦ2
k2

(x2)OΦ3
k3

(x3)OΦ4
k4

(x4)〉 = N2

(

δΦ1Φ2δΦ3Φ4
δ(k1 + k2)δ(k3 + k4)

x
2|k1|
12 x

2|k3|
34

+ · · ·
)

,

(5.6)

where the ellipses denote permutations and numerical factors are suppressed. The scaling

as N2 follows from the fact that these disconnected contributions are the products of two

point functions. Working with unit normalized operators, the disconnected contribution to

the four point function thus scales as one. Connected contributions to four point functions

however scale as N or, working with unit normalized operators, as 1/N . Note that holo-

graphic computation of the connected contributions involves both the cubic and quartic

couplings, whilst the disconnected contributions follow entirely from the (renormalized)

quadratic action.

Now let us consider correlation functions involving multi particle operators. In partic-

ular, one can read off the large N behavior of correlators involving double particle opera-

tors from the single particle correlators discussed above. The operator product expansion

OΦ1
k1

(x1)OΦ2
k2

(x2) contains the term

OΦ1
k1

(x1)OΦ2
k2

(x2) → [OΦ1
k1

(x1)OΦ2
k2

(x1)] (5.7)

with unit coefficient as x1 → x2 since the double particle operator is defined by the short

distance limit. Thus from the x1 → x2 behavior of correlators one can extract the N

scaling of mixed correlators involving both single and multi particle operators. Working
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with unit normalized single particle operators this gives

〈Ô†Φ1

k (x1)[ÔΦ2
k1

(x2)ÔΦ3
k2

(x2)]〉 ≈
C123

k1k2√
N

; (5.8)

〈[ÔΦ1
l (x1)ÔΦ2

k−l(x1)]
†ÔΦ3

k1
(x2)ÔΦ4

k2
(x3)〉 ≈ (δlk1δΦ1Φ3δΦ2Φ4 + δlk2δΦ1Φ4δΦ2Φ3);

〈[ÔΦ1
l (x1)ÔΦ2

k−l(x1)]
†ÔΦ3

k1
(x2)ÔΦ4

k2
(x3)〉 ≈ 1

N
; l 6= k1, k2;

〈[ÔΦ1
l (x1)ÔΦ2

k−l(x1)]
†[ÔΦ3

k1
(x2)ÔΦ4

k2
(x2)]〉 ≈ (δlk1δΦ1Φ3δΦ2Φ4 + δlk2δΦ1Φ4δΦ2Φ3);

〈[ÔΦ1
l (x1)ÔΦ2

k−l(x1)]
†[ÔΦ3

k1
(x2)ÔΦ4

k2
(x2)]〉 ≈ 1

N
; l 6= k1, k2.

where in all cases k = k1 + k2, and thus the correlators are extremal. The (standard) xi

dependence of the correlators is suppressed. Here structure constants C123
k1k2

follow from

the extremal single particle correlators given in (2.8). The second and fourth correlators

follow from the disconnected components of the four point functions, whilst the third and

fifth correlators pick up contributions only from the connected components and are thus

subleading.

This large N counting demonstrates that operator mixings which are extremal are not

suppressed in extremal correlators. That is, suppose one considers operators such that

(ÕΦa

kb+kc
) = ÔΦa

kb+kc
+

1√
N

babc
kbkc

[ÔΦb

kb
ÔΦc

kc
] + · · · , (5.9)

where the ellipses denote three particle and higher mixings. Then by construction

〈(ÕΦa

ka
)†(ÕΦb

kb
)〉 = δΦaΦbδkakb

+ O
(

1

N

)

; (5.10)

〈(ÕΦa

kb+kc
)†(ÕΦb

kb
)(ÕΦc

kc
)〉 =

1√
N

(Cabc
kbkc

+ babc
kbkc

) + O
(

1

N

)

≡ 1√
N

C̃abc
kbkc

+ O
(

1

N

)

.

Thus to leading order in N the mixed operators have the same two point functions as the

single particle operators, and their three point functions still scale as 1/
√

N . However, the

structure constants are modified: Cabc
kbkc

→ C̃abc
kbkc

. Note that the N scaling of the m-particle

term in the mixing (5.9) is 1/Nm/2 such that the n-point functions of the mixed operators

scale as N (1−n/2).

In the case at hand, for the exceptional extremal holographic and string correlators to

agree, one needs the following quadratic operator mixings:

O
Σ
2 = ÔΣ

2 +
1

2
√

3N
L(Ji,mi)L(J̄i, m̄i)ÔS

1 ÔS
1 + · · · ; (5.11)

O
S
2 = ÔS

2 +
1√
N

L(Ji,mi)L(J̄i, m̄i)ÔS
1 ÔS

1 + · · · ;

O
S
∆+1 = ÔS

∆+1 +

√

∆(∆ + 1)√
2N

L(Ji,mi)L(J̄i, m̄i)ÔS
1 ÔS

∆ + · · · ;

O
S(r)

∆+1 = ÔS(r)

∆+1 +

√

∆(∆ + 1)√
2N

L(Ji,mi)L(J̄i, m̄i)ÔS
1 ÔS(r)

∆ + · · · ;

O
Σ
∆+1 = ÔΣ

∆+1 +
1√
2N

∆(∆ + 1)
√

(∆ − 1)(∆ + 2)
L(Ji,mi)L(J̄i, m̄i)ÔS

1 ÔΣ
∆ + · · · ,
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where in the latter three cases ∆ ≥ 2. The ellipses denote additional potential mixings,

which include both two particle operators involving vector chiral primaries and n-particle

operators with n ≥ 3.

Several computations could in principle be used to verify the consistency of these op-

erator identifications. Firstly, one could compute finite N corrections to the supergravity

and string theory/orbifold CFT two and three point functions, although on the supergrav-

ity side this is currently intractable since only a subset of the requisite corrections to the

effective action are known. Secondly, one could compute correlation functions for opera-

tors in the same supermultiplets, which are dual to other supergravity fields. These should

also be protected, and the operator identifications required for supergravity and string the-

ory/orbifold CFT correlations functions to agree should descend from those given in (5.11).

As previously mentioned, it would be interesting to understand the non-

renormalization better, both from the perspective of the 2d N = 4 CFT and from su-

pergravity. This could lead to other non-renormalization theorems and give insights into

the required operator matching. More generally one would like to explore further the re-

lationship between the supergravity and string theory computations, to understand better

the latter. In supergravity there is by now a deep understanding of the holographic renor-

malization used to remove infinite volume divergences and obtain renormalized correlators.

The same volume renormalization is also responsible for the finiteness of correlators in the

string computations, but renormalization has not been systematically developed and ap-

plied in this context. Moreover, in supergravity there is a natural geometric understanding

of the connection between boundary conditions for bulk fields and dual operators, whilst

in the string computations the relation proposed in [27] between worldsheet vertex op-

erators and CFT operators is less well understood. Thus insights from the supergravity

holographic computations may help to understand further the (successful) hypotheses used

in the string computations.
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